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1 Introduction

The cusp package provides routines for �tting a cusp catastrophe model as suggested by
(Cobb, 1978). The full documentation of the package can be found in the vignette �Fitting
the Cusp Catastrophe in R: A cusp-Package Primer� included with the package.

2 Getting started

Load the library with the statement

> library(cusp)

3 The Zeeman data

We analyze three data sets that were obtained with three di�erent instances of a Zeeman
catastrophe machine. This device consists of a wheel is tethered by an elastic chord to a
�xed point. For sake of reference let the central axis be de�ned as the axis parallel to the
line between the �xed point and the center of the wheel. Another elastic is also attached
to the wheel on one end, while the other end is moved about in the `control plane' area
opposite to the �xed point. The shortest distance between the strap point on the wheel and
the central axis is recorded as a function of the position in the control plane. (In the original
machine the angle between this axis and the line through the wheel center and the strap
point is used.) See https://www.math.sunysb.edu/ tony/whatsnew/column/catastrophe-
0600/cusp4.html for a vivid demonstration. The behavior of the Zeeman catastrophe ma-
chine is archetypal for the deterministic Cusp Catastrophe.

The data sets were obtained from 3 di�erent physical instances of this machine, made
by di�erent people.

Measurements from this machine will be made with measurement errors, e.g., due to
parallax, friction, writing mistakes etc. The measurements will �t the following model, the
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Figure 1: Catastrophe machine that was used to collect the data in zeeman2

we will dub the measurement error model,

yi = zi + ϵi, (1)

where ϵi is a zero mean random variable, e.g., ϵ ∼ N(0, σ2) for some σ2, and zi is one of
the extremal real roots of the cusp catastrophe equation

αi + βiz − z3 = 0.

Note that this is quite di�erent from Cobb's conceptualization of the stochastic cusp catas-
trophe, in which

yi ∼ Ψ eαiy+βiy
2− 1

4
y4 .

where the right hand side is the state density of the stochastic di�erential equation

dY = (αi + βiz − z3)dt+ dW (t), (2)

where W (t) is a Wiener process.
The cusp package is intended for the latter model (i.e., for Cobb's stochastic catastrophe

model). However, the data from the Zeeman catastrophe machine below show that it is
also quite suitable for the former model.

3.1 zeeman1

The �rst data set

> data(zeeman1)

> nrow(zeeman1)
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Figure 2: Catastrophe machine used for the data set zeeman1 (left). Schematic Zeeman
machine and the variables available in the data frames (right).
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[1] 150

> head(zeeman1)

x y z

1 -7 2 -2.0

2 -6 2 -1.8

3 -5 2 -1.8

4 -4 2 -1.3

5 -3 2 -0.8

6 -2 2 -0.5

consists of 150 observations from experiments with the machine.
The columns of zeeman1 respectively contain the value on the asymmetry axis which is

orthogonal to the central axis (x), the value of the bifurcation variable which is parallel to
the central axis (y), and state variable, the shortest distance from the wheel strap point to
the central axis. Figure 2 displays these coordinates.

While thus the asymmetry and bifurcation variables are known, namely x and y respec-
tively, we �t the model where each parameter is regressed on both of the control variables:

> fit1.1 = cusp(y~z, alpha~x+y, beta~x+y, zeeman1)

> summary(fit1.1)

Call:

cusp(formula = y ~ z, alpha = alpha ~ x + y, beta = beta ~ x +

y, data = zeeman1)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.26705 -0.11605 -0.01376 0.10961 2.04443

Coefficients:

Estimate Std. Error z value Pr(>|z|)

a[(Intercept)] 0.21470 0.25516 0.841 0.40011

a[x] 1.15341 0.15558 7.414 1.23e-13 ***

a[y] -0.16460 0.11996 -1.372 0.17002

b[(Intercept)] 1.04763 0.37401 2.801 0.00509 **

b[x] 0.02851 0.14058 0.203 0.83927

b[y] -1.48202 0.13634 -10.870 < 2e-16 ***

w[(Intercept)] -0.02387 0.13178 -0.181 0.85625

w[z] 0.90316 0.02723 33.168 < 2e-16 ***

---
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Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 539.492 on 149 degrees of freedom

Linear deviance: 85.233 on 146 degrees of freedom

Logist deviance: NA on NA degrees of freedom

Delay deviance: 24.228 on 142 degrees of freedom

R.Squared logLik npar AIC AICc BIC

Linear model 0.8711298 -170.44770 4 348.8954 349.1713 360.9379

Cusp model 0.9554786 76.23194 8 -136.4639 -135.4426 -112.3788

---

Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value

can become negative.

Chi-square test of linear vs. cusp model

X-squared = 493.4, df = 4, p-value = 0

Number of optimization iterations: 72

The summary table indicates that the regression coe�cients a[(Intercept)], a[y], b[x],
and w[(Intercept)] are non-signi�cant suggesting that they are not required in the model.
We therefore �t the model again, leaving these regressors out of the model:

> fit1.2 = cusp(y~z-1, alpha~x-1, beta~y, zeeman1)

> summary(fit1.2) # compare with logistic fit as well

Call:

cusp(formula = y ~ z - 1, alpha = alpha ~ x - 1, beta = beta ~

y, data = zeeman1)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.15809 -0.04248 0.04943 0.16451 2.11321

Coefficients:

Estimate Std. Error z value Pr(>|z|)

a[x] 1.15341 0.15540 7.422 1.15e-13 ***

b[(Intercept)] 0.96994 0.37551 2.583 0.00979 **

b[y] -1.47496 0.13656 -10.801 < 2e-16 ***

w[z] 0.89487 0.02723 32.862 < 2e-16 ***
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---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 529.634 on 149 degrees of freedom

Linear deviance: 85.233 on 146 degrees of freedom

Logist deviance: NA on NA degrees of freedom

Delay deviance: 23.365 on 146 degrees of freedom

R.Squared logLik npar AIC AICc BIC

Linear model 0.8716421 -170.4477 4 348.8954 349.1713 360.9379

Cusp model 0.9568910 70.7295 4 -133.4590 -133.1831 -121.4165

---

Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value

can become negative.

Chi-square test of linear vs. cusp model

X-squared = 482.4, df = 0, p-value = 0

Number of optimization iterations: 18

Now all the regression coe�cients `are signi�cant'. If we turn attention to the infor-
mation criteria however, we see that the AIC for the �rst model (-136.464) is smaller than
the AIC for the second model (-133.459). The BIC on the other hand, is larger for the
�rst model (-112.379) compared to the second model (-133.459). Because in the �rst model
especially the intercept for that state model equation is quite small (w[(Intercept)] =
-0.0239), we relax the second model a bit by allowing for intercept in model equation for α
to see if the AIC is smaller

> fit1.3 = cusp(y~z-1, alpha~x, beta~y, zeeman1)

> (sf1.3 <- summary(fit1.3, logist=TRUE))

Call:

cusp(formula = y ~ z - 1, alpha = alpha ~ x, beta = beta ~ y,

data = zeeman1)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.21248 -0.10346 0.00771 0.12443 2.07045

Coefficients:
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Estimate Std. Error z value Pr(>|z|)

a[(Intercept)] 0.45555 0.17266 2.638 0.00833 **

a[x] 1.15341 0.15471 7.455 8.98e-14 ***

b[(Intercept)] 0.99190 0.37313 2.658 0.00785 **

b[y] -1.47891 0.13597 -10.877 < 2e-16 ***

w[z] 0.89766 0.02711 33.114 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 532.944 on 149 degrees of freedom

Linear deviance: 85.233 on 146 degrees of freedom

Logist deviance: 17.061 on 146 degrees of freedom

Delay deviance: 24.683 on 145 degrees of freedom

R.Squared logLik npar AIC AICc BIC

Linear model 0.8716421 -170.44770 4 348.8954 349.1713 360.9379

Logist model 0.9742049 -49.80112 4 107.6022 107.8781 119.6448

Cusp model 0.9540613 74.72029 5 -139.4406 -139.0239 -124.3874

---

Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value

can become negative.

Chi-square test of linear vs. cusp model

X-squared = 490.3, df = 1, p-value = 0

Number of optimization iterations: 31

The AIC, AICc and BIC are now all smaller than both the �rst and the second model, and
all intercept coe�cients `are signi�cant'.

In the call to summary, this time we have set the optional parameter logist to TRUE, so
that also the logistic model is �tted for a more critical test of the cusp model (see the main
vignette and help(cusp.logist) for details). The information criteria all indicate that the
cusp model is to be preferred over the logistic model, even though the pseudo-R2 is larger
for the logistic model (0.9742) than for the cusp model (0.9541). (See for a discussion of
the pseudo-R2 the main vignette.)

Figure 3 displays a diagnostic plot of the last model that was generated with

> plot(fit1.3)
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> plot(fit1.3)
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Figure 3: Diagnostic plot for the second model �tted to zeeman1.
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3.2 zeeman2

We �t the same models as in the previous case

> data(zeeman2)

> fit2.1 = cusp(y~z, alpha~x+y, beta~x+y, zeeman2)

> summary(fit2.1)

Call:

cusp(formula = y ~ z, alpha = alpha ~ x + y, beta = beta ~ x +

y, data = zeeman2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.589e+00 -1.839e-01 -3.037e-06 1.839e-01 1.589e+00

Coefficients:

Estimate Std. Error z value Pr(>|z|)

a[(Intercept)] -1.331e-04 2.084e-01 -0.001 0.99949

a[x] 7.892e-01 9.925e-02 7.952 1.84e-15 ***

a[y] 1.433e-05 4.994e-02 0.000 0.99977

b[(Intercept)] 3.891e+00 2.864e-01 13.588 < 2e-16 ***

b[x] 1.154e-05 4.585e-02 0.000 0.99980

b[y] 1.007e-01 3.448e-02 2.921 0.00349 **

w[(Intercept)] 8.802e-06 4.799e-02 0.000 0.99985

w[z] 7.789e-01 1.791e-02 43.495 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 1100.117 on 197 degrees of freedom

Linear deviance: 426.846 on 194 degrees of freedom

Logist deviance: NA on NA degrees of freedom

Delay deviance: 25.421 on 190 degrees of freedom

R.Squared logLik npar AIC AICc BIC

Linear model 0.7645990 -356.9972 4 721.9944 722.2016 735.1475

Cusp model 0.9770089 121.4310 8 -226.8621 -226.1002 -200.5559

---

Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value

can become negative.
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Chi-square test of linear vs. cusp model

X-squared = 956.9, df = 4, p-value = 0

Number of optimization iterations: 94

Again, the intercept coe�cients a[(Intercept)] and w[(Intercept)]) are non-signi�cant,
as are a[y] and b[x]. We leave these coe�cients out of the model in the followup �t

> fit2.2 = cusp(y~z-1, alpha~x-1, beta~y, zeeman2)

> summary(fit2.2)

Call:

cusp(formula = y ~ z - 1, alpha = alpha ~ x - 1, beta = beta ~

y, data = zeeman2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.589e+00 -1.839e-01 3.331e-15 1.839e-01 1.589e+00

Coefficients:

Estimate Std. Error z value Pr(>|z|)

a[x] 0.78913 0.09924 7.952 1.84e-15 ***

b[(Intercept)] 3.89115 0.28636 13.588 < 2e-16 ***

b[y] 0.10071 0.03448 2.921 0.00349 **

w[z] 0.77891 0.01791 43.495 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 1100.104 on 197 degrees of freedom

Linear deviance: 426.846 on 194 degrees of freedom

Logist deviance: NA on NA degrees of freedom

Delay deviance: 25.421 on 194 degrees of freedom

R.Squared logLik npar AIC AICc BIC

Linear model 0.7645990 -356.9972 4 721.9944 722.2016 735.1475

Cusp model 0.9770089 121.4310 4 -234.8621 -234.6548 -221.7090

---

Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value

can become negative.
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Chi-square test of linear vs. cusp model

X-squared = 956.9, df = 0, p-value = 0

Number of optimization iterations: 34

The AIC of this reduced model (-234.8621) is indeed smaller than the AIC of the previous
model (-226.8621). If for comparison with the model selected for zeeman1 we include
a[(Intercept)] again, this barely reduces the negative log-likelihood, while increasing the
AIC. More importantly this coe�cient is estimated to be zero.

> fit2.3 = cusp(y~z-1, alpha~x, beta~y, zeeman2)

> fit2.3

Call: cusp(formula = y ~ z - 1, alpha = alpha ~ x, beta = beta ~ y, data = zeeman2)

Coefficients:

a[(Intercept)] a[x] b[(Intercept)] b[y] w[z]

1.008e-16 7.891e-01 3.891e+00 1.007e-01 7.789e-01

Degrees of Freedom: 197 Total (i.e. Null); 193 Residual

Null Deviance: 1100

Delay Deviance: 25.42 AIC: -232.9

3.3 zeeman3

We do the same analysis for zeeman3.

> data(zeeman3)

> fit3.1 <- cusp(y~z, alpha~x+y, beta~x+y, zeeman3)

> summary(fit3.1)

Call:

cusp(formula = y ~ z, alpha = alpha ~ x + y, beta = beta ~ x +

y, data = zeeman3)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.28904 -0.14995 0.03348 0.17721 2.44220

Coefficients:

Estimate Std. Error z value Pr(>|z|)
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a[(Intercept)] -0.0540490 0.0033964 -15.914 <2e-16 ***

a[x] 0.2437644 0.0006382 381.935 <2e-16 ***

a[y] -0.0185760 0.0008130 -22.848 <2e-16 ***

b[(Intercept)] 4.8832846 0.0034005 1436.034 <2e-16 ***

b[x] -0.0454644 0.0006383 -71.223 <2e-16 ***

b[y] -0.6766923 0.0008136 -831.715 <2e-16 ***

w[(Intercept)] -0.0564834 0.0219623 -2.572 0.0101 *

w[z] 0.4664489 0.0044566 104.666 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 987.386 on 281 degrees of freedom

Linear deviance: 2016.486 on 278 degrees of freedom

Logist deviance: NA on NA degrees of freedom

Delay deviance: 55.197 on 274 degrees of freedom

R.Squared logLik npar AIC AICc BIC

Linear model 0.5556587 -677.51652 4 1363.03304 1363.17744 1377.6007

Cusp model 0.9451417 -34.08026 8 84.16052 84.68799 113.2958

---

Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value

can become negative.

Chi-square test of linear vs. cusp model

X-squared = 1287, df = 4, p-value = 0

Number of optimization iterations: 114

This time all regression coe�cients are signi�cant. We still compare with the simpli�ed
model used in the other cases to see if the AIC, AICc and BIC might be lower still

> fit3.2 <- cusp(y~z-1, alpha~x-1, beta~y, zeeman3)

> summary(fit3.2)

Call:

cusp(formula = y ~ z - 1, alpha = alpha ~ x - 1, beta = beta ~

y, data = zeeman3)

Deviance Residuals:

Min 1Q Median 3Q Max
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-2.496125 -0.182561 -0.005285 0.158835 1.054552

Coefficients:

Estimate Std. Error z value Pr(>|z|)

a[x] 0.24273 0.02918 8.317 <2e-16 ***

b[(Intercept)] 4.87001 0.25664 18.976 <2e-16 ***

b[y] -0.68031 0.04054 -16.781 <2e-16 ***

w[z] 0.46586 0.01051 44.334 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 984.900 on 281 degrees of freedom

Linear deviance: 2016.486 on 278 degrees of freedom

Logist deviance: NA on NA degrees of freedom

Delay deviance: 56.263 on 278 degrees of freedom

R.Squared logLik npar AIC AICc BIC

Linear model 0.5563031 -677.51652 4 1363.03304 1363.17744 1377.60067

Cusp model 0.9445425 -36.21439 4 80.42879 80.57319 94.99642

---

Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value

can become negative.

Chi-square test of linear vs. cusp model

X-squared = 1283, df = 0, p-value = 0

Number of optimization iterations: 25

Compared to the previous �t, this model indeed yields a lower AIC, AICc, and BIC and
hence is preferred according to the information criteria.

4 Simulation

Sometimes it's useful to be able to simulate data from a model. Two cases are discussed
here.
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4.1 Generating data in accordance with Cobb's cusp SDE

To obtain observations in accordance with Cobb's stochastic cusp catastrophe model in
equation (2), the function rcusp can be used. If for all the observations α and β are equal,
this is simply done with the statement. Figure 4 displays a histogram.

> set.seed(423)

> alpha = 0.25

> beta = 2

> n = 1000

> y = rcusp(n, alpha, beta)

> hist(y,80,freq=FALSE)

> curve(dcusp(x, 0.25, 2), min(y)-1, max(y)+1, add=TRUE, col=2)

The parameters α and β can simply be estimated with the statement

> cusp(y~y-1, alpha~1, beta~1)

Call: cusp(formula = y ~ y - 1, alpha = alpha ~ 1, beta = beta ~ 1)

Coefficients:

a[(Intercept)] b[(Intercept)] w[y]

0.1916 2.0654 1.0081

Degrees of Freedom: 999 Total (i.e. Null); 997 Residual

Null Deviance: 1641

Delay Deviance: 361.2 AIC: 2278

If the α's and β's are di�erent, e.g., depending on predictive variables, they can be
generated for example with the statements

> set.seed(423)

> x1 = runif(150)

> x2 = runif(150)

> a = c(-2, 4)

> b = c(-1, 4)

> alpha = a[1] + a[2]*x1

> beta = b[1] + b[2]*x2

> z = Vectorize(rcusp)(1, alpha, beta)

> data <- data.frame(x1, x2, z)

Estimating the coe�cients in a and b can then be carried out with, e.g.,

> fit <- cusp(y ~ z, alpha ~ x1+x2, beta ~ x1+x2, data)
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Figure 4: Histogram of 1000 observations from Cobb's stochastic cusp catastrophe SDE
(as opposed to the deterministic cusp catastrophe) with for each observation α = 0.25 and
β = 2.
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4.2 Generating data in accordance with the measurement error model

We can generate data in accordance with the measurement error model in equation (1) as
follows

> set.seed(423)

> g = expand.grid(seq(-3,3,len=15), seq(-3,3,len=15))

> a = g[,1]; b = g[,2]; idx=cbind(sample(c(1,3),length(a),TRUE), seq(along=a));

> s = Vectorize(cusp.extrema)(a,b)[idx]

> y = s + rnorm(length(s),,.3)

Here g is a grid of points on the control surface, and cusp.extrema is used to compute the
roots of the cusp equilibrium equation

α+ βy2 − y3 = 0.

The vector of states s is then constructed by sampling from the smallest and largest roots.
The observations y are then created in accordance with the measurement error model.

It instructive to see a 3D plot of the generated data points generated in this way

> if(require(plot3D)){

+ scatter3D(a, b, y, theta=200, phi=10, zlim=c(-4,4));

+ # you can try require(rgl); rgl.points(a, b, y) instead

+ }

Note that this measurement model is not cusp SDE model of Cobb as described in
the paper (the main vignette that comes with the cusp package). Even so, the maximum
likelihood method of Cobb, does �t this surface quite well:

> fit <- cusp(y~y, alpha~a, beta~b)

> summary(fit)

Call:

cusp(formula = y ~ y, alpha = alpha ~ a, beta = beta ~ b)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.80324 -0.19146 0.02445 0.26135 2.81930

Coefficients:

Estimate Std. Error z value Pr(>|z|)

a[(Intercept)] -0.144327 0.167897 -0.860 0.390

a[a] 1.620453 0.184198 8.797 <2e-16 ***

b[(Intercept)] -0.127060 0.397925 -0.319 0.749
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b[b] 1.405980 0.101885 13.800 <2e-16 ***

w[(Intercept)] -0.009536 0.037232 -0.256 0.798

w[y] 1.122367 0.034857 32.199 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 472.219 on 224 degrees of freedom

Linear deviance: 118.853 on 221 degrees of freedom

Logist deviance: NA on NA degrees of freedom

Delay deviance: 40.432 on 219 degrees of freedom

R.Squared logLik npar AIC AICc BIC

Linear model 0.6829434 -247.46224 4 502.9245 503.1063 516.5889

Cusp model 0.9160938 -54.00909 6 120.0182 120.4035 140.5148

---

Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value

can become negative.

Chi-square test of linear vs. cusp model

X-squared = 386.9, df = 2, p-value = 0

Number of optimization iterations: 66
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